Correction: Microrheological Characterization of Collagen Systems: From Molecular Solutions to Fibrillar Gels

نویسندگان

  • Marjan Shayegan
  • Nancy R. Forde
چکیده

Collagen is the most abundant protein in the extracellular matrix (ECM), where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collagen gel systems for sustained delivery and tissue engineering.

Collagen gels are flowable, suggesting the possibility of an easily injectable, biocompatible drug delivery matrix. Sustained release of therapeutic molecules from collagen matrices, however, is beset with difficulties. Fibrillar collagen gels have an effective pore size of several tens of nanometers, too large to control release by hindered diffusion. To control release, it is necessary to rel...

متن کامل

The effect of acid mucopolysaccharides and acid mucopolysaccharide-proteins on fibril formation from collagen solutions.

1. The effects of acid mucopolysaccharides and acid mucopolysaccharide-proteins on the size and rate of formation of fibril aggregates from collagen solutions in pH7.6 buffers were studied by turbidimetric and light-scattering methods. 2. Serum albumin, orosomucoid, methylated cellulose, chondroitin sulphate A and chondroitin sulphate C of molecular weight less than 20000, and hyaluronate of mo...

متن کامل

Structure and rheology of gelatin and collagen gels.

This paper undertakes a parallel analysis of the gelation mechanisms, structure and rheological properties of gelatin and collagen gels. Although the molecular compositions of collagen and gelatin are almost identical, gelation proceeds from distinct mechanisms and leads to different types of molecular assemblies. First are presented the properties of the solutions, based on their structural an...

متن کامل

Research Article: Isolation, characterization and biocompatibility evaluation of collagen from Thunnus tonggol skin

Acid-soluble collagen could be isolated from fish skin using acetic acid. In recent years, much attention has been paid to collagen from marine sources, mainly arising from the fact that there is no risk of contagious diseases. Moreover, by processing the fish, significant amounts of waste materials are produced which can be considered as a substitute for these collagen sources. Thunnus tonggol...

متن کامل

The Effects of Age and the Expression of SPARC on Extracellular Matrix Production by Cardiac Fibroblasts in 3-D Cultures

Fibrillar collagen is the primary component of the cardiac interstitial extracellular matrix. This extracellular matrix undergoes dramatic changes from birth to adulthood and then into advanced age. As evidence, fibrillar collagen content was compared in sections from neonates, adult, and old hearts and was found to increase at each respective age. Cardiac fibroblasts are the principle cell typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013